The cocyclic Hadamard matrices of order less than 40

نویسندگان

  • Padraig Ó Catháin
  • Marc Röder
چکیده

In this paper all cocyclic Hadamard matrices of order less than 40 are classified. That is, all such Hadamard matrices are explicitly constructed, up to Hadamard equivalence. This represents a significant extension and completion of work by de Launey and Ito. The theory of cocyclic development is discussed, and an algorithm for determining whether a given Hadamard matrix is cocyclic is described. Since all Hadamard matrices of order at most 28 have been classified, this algorithm suffices to classify cocyclic Hadamard matrices of order at most 28. Not even the total numbers of Hadamard matrices of orders 32 and 36 are known. Thus we use a different method to construct all cocyclic Hadamard matrices at these orders. A result of de Launey, Flannery and Horadam on the relationship between cocyclic Hadamard matrices and relative difference sets is used in the classification of cocyclic Hadamard matrices of orders 32 and 36. This is achieved through a complete enumeration and construction of (4t, 2, 4t, 2t)-relative difference sets in the groups of orders 64 and 72.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Group actions on Hadamard matrices

Faculty of Arts Mathematics Department Master of Literature by Padraig Ó Catháin Hadamard matrices are an important item of study in combinatorial design theory. In this thesis, we explore the theory of cocyclic development of Hadamard matrices in terms of regular group actions on the expanded design. To this end a general theory of both group development and cocyclic development is formulated....

متن کامل

Classifying cocyclic Butson Hadamard matrices

We classify all the cocyclic Butson Hadamard matrices BH(n, p) of order n over the pth roots of unity for an odd prime p and np ≤ 100. That is, we compile a list of matrices such that any cocyclic BH(n, p) for these n, p is equivalent to exactly one element in the list. Our approach encompasses non-existence results and computational machinery for Butson and generalized Hadamard matrices that a...

متن کامل

Cocyclic Butson Hadamard matrices and Codes over Zn via the Trace Map

Over the past couple of years trace maps over Galois fields and Galois rings have been used very successfully to construct cocyclic Hadamard, complex Hadamard and Butson Hadamard matrices and subsequently to generate simplex codes over Z4,Z2s and Zp and new linear codes over Zps . Here we define a new map, the trace-like map and more generally the weighted-trace map and extend these techniques ...

متن کامل

On the asymptotic existence of cocyclic Hadamard matrices

Let q be an odd natural number. We prove there is a cocyclic Hadamard matrix of order 210+tq whenever t ≥ 8b log2(q−1) 10 c. We also show that if the binary expansion of q contains N ones, then there is a cocyclic Hadamard matrix of order 24N−2q.

متن کامل

Difference sets and doubly transitive actions on Hadamard matrices

Non-affine groups acting doubly transitively on a Hadamard matrix have been classified by Ito. Implicit in this work is a list of Hadamard matrices with non-affine doubly transitive automorphism group. We give this list explicitly, in the process settling an old research problem of Ito and Leon. We then use our classification to show that the only cocyclic Hadamard matrices developed form a dif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Des. Codes Cryptography

دوره 58  شماره 

صفحات  -

تاریخ انتشار 2011